Membrane transport and resting membrane potential

김명환 (kmhwany@snu.ac.kr)

Diffusion

The migration of molecules down a concentration gradient

Diffusion

Net movement (100 \longrightarrow) caused by random movement

Rate depend on the concentration difference between the two regions

Microscopic movements of molecules

Physiological significance

"Random walk" of a single molecule

- 1. Diameter of mammalian cell \leq 20 μ m
- 2. Synaptic cleft : 20 ~ 50 nm
- 3. Circulatory systems in multicellular organism

Distance of Diffusion	Approximate Time Required
10 nm	23.8 ns
50 nm	595 ns
100 nm	2.38 μs
1 µm	238 µs
10 µm	23.8 ms
100 µm	2.38 s
1 mm	3.97 min
1 cm	6.61 hours
10 cm	27.56 days

Direction of the flux

Flux (J): the amount of material passing through unit area per unit time (단위시간 당 단위면적을 통해 이동하는 물질의 양)

 Δx

D: diffusion coefficient

Fick's First Law of Diffusion

$$J \propto \frac{\Delta C}{\Delta x}$$

 $\Delta C / \Delta x$: concentration gradient ([mol/cm³]/cm = mol·cm⁻⁴) J : flux ([mol/cm²]/sec)

$$J = -D \frac{\Delta C}{\Delta x}$$

$$J = -D \frac{dC}{dx} \qquad D = \frac{kT}{6\pi\eta R}$$

- k: Boltzmann's constantT: absolute temperatureR: radius of the spherical particleη: viscosity
- 1. Concentration gradient drives diffusion
- 2. Molecules move from higher concentration to lower concentration
- 3. Passive process (does not require energy)
- 4. Net movement of molecules occurs until dynamic equilibrium.
- 5. Diffusion rate is inversely related to molecular size
- 6. Diffusion rate is proportional to temperature
- 7. Diffusion is rapid over short distance but slower over long distance
- 8. Diffusion rate is proportional to the surface area of the membrane

Transport across biological membrane through channel, carrier, and pump protein

TABLE 2-1Permeability of Plain Lipid Bilayer Membraneto Solutes			
SOLUTE	P (cm/sec)	τ*	
Water	10 ⁻⁴ -10 ^{-3†}	0.5-5 sec	
Urea	10 ⁻⁶	\sim 8 min	
Glucose, amino acids	10 ⁻⁷	\sim 1.4 hr	
CI-	10 ⁻¹¹	\sim 1.6 yr	
K ⁺ , Na ⁺	10 ⁻¹³	~160 yr	

Gases CO2, N2, O2 Permeable Small Ethanol uncharged Permeable polar molecules Ο H_2O $NH_2 - C - NH_2$ Water Slightly Urea permeable Large uncharged polar Glucose, fructose molecules Impermeable lons K⁺, Mg²⁺, Ca²⁺, Cl⁻, HCO3⁻, HPO4²⁻ Impermeable Charged Amino acids, ATP, polar glucose 6-phosphate, molecules proteins, nucleic acids Impermeable Figure 11-1 Molecular Cell Biology, Sixth Edition

© 2008 W.H. Freeman and Company

A pure artificial phospholipid bilayer is permeable to small hydrophobic molecules and small uncharged polar molecules.

Movements of ions

© 2001 Lippincott Williams & Wilkins

1. Diffusion (Chemical gradient) 2. Electricity (Electrical gradient)

Copyright @ 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

Copyright © 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

Diffusion potential

Equilibrium

Movement of ions driven by electrical potential gradient

Electric field (force, electrical potential gradient) \rightarrow movement of ions Speed of ion movement \propto strength of the electric field, charge on the ion

 $\Delta C/\Delta x$: concentration gradient (mol/cm)

 $\Delta E/\Delta x$: electrical potential gradient (V/cm)

$$s = uz \frac{\Delta E}{\Delta x}$$

s : 이온의 이동 속도 (cm/sec) *u* : ionic mobility (cm²/sec/V) 단위전위기울기(전기장, V/cm)에서 이온의 이동속도(cm/sec)

Total number of moles of ion : $C \times s \times \Delta t \times A$ (cylindrical volume = $s\Delta t \times A$)

$$J_{electr} = -[(C \times s \times \Delta t \times A)/A]/\Delta t = -C \times s$$

$$= -uzC \ \frac{\Delta E}{\Delta x} = \ -uzC \ \frac{dE}{dx}$$

Nernst equation

$$J_{total} = J_{diffusion} + J_{electr} = -D \frac{dC}{dx} - uzC \frac{dE}{dx}$$

 $J_{diffusion}$: flux driven by the chemical gradient $J_{electric}$: flux driven by the electrical gradient

At equilibrium,
$$-D \frac{dC}{dx} - uzC \frac{dE}{dx} = 0$$

 $uzC\frac{dE}{dx} = -D\frac{dC}{dx}$, *D*(diffusion coefficient of ion)= $\frac{uRT}{F}$

Equilibrium

$$uzC\frac{dE}{dx} = -\frac{uRT}{F}\frac{dC}{dx}$$

$$\frac{dE}{dx} = \frac{-RT}{zF} \frac{1}{C} \frac{dC}{dx}$$

$$\int_{x1}^{x2} \frac{dE}{dx} dx = \frac{-RT}{zF} \int_{x1}^{x2} \frac{1}{C} \frac{dC}{dx} dx$$

$$E_2 - E_1 = \frac{-RT}{zF} (\ln C_2 - \ln C_1)$$

$$= \frac{-RT}{zF} \ln \frac{C_2}{C_1} = \frac{RT}{zF} \ln \frac{C_1}{C_2}$$

u: mobility of the ion

R: gas constant

T : temperature

F : Faraday constant

Force and potential energy

Chemical potential energy

Concentration gradient gives rise to a chemical force Gradient of potential energy

 $v = uFc \ \left\{ \begin{array}{l} v: \text{ velocity of molecule} \\ u: \text{ mobility coefficient} \\ F_c: \text{ chemical force} \end{array} \right.$

$$J = \frac{moles \ of \ S/A}{\Delta t} = \frac{[S] \times A \times (v \Delta t)/A}{\Delta t}$$

$$= [S]v = [S]uF_c \quad (u = D/RT)$$

 $J = -D \frac{d[S]}{dx} \qquad \text{(Fick's first law)}$

$$F_c = -RT \frac{1}{[S]} \frac{d[S]}{dx} = -RT \frac{d\ln[S]}{dx}$$

 $\frac{du_s}{dx} = -Fc = RT \frac{d\ln[S]}{dx}$

 $u_{s} = constant + RTln[S]$

Chemical potential energy
$$\mu_{S} = \mu_{S}^{0} + RT \ln[S]$$

 μ_{S}^{0} : chemical potential energy of solute at the reference concentration (1 M)

Electrical potential energy

Electrical potential
energy of single ion
$$= zeV$$

Electrical potential energy of

Electrical potential energy of zFV one mole of ion F:

 $F: N_A \times e$

 μ_x (electrochemical potential energy) = $\mu_x^0 + RT \ln[X] + zFV$

Electrochemical potential of solutes inside and outside a cell

 μ_x (electrochemical potential energy) = $\mu_x^0 + RT \ln[X] + zFV$

For glucose (z=0)

 $\mu_{G,i} = \mu_G^0 + RT \ln[G]_i$

$$\mu_{G,O} = \mu_G^0 + RT \ln[G]_O$$

For sulfate ion $(SO_4^{2-}, z=-2)$

$$\mu_{SO4}^{2-}, i = \mu_{SO4}^{2-0} + RT \ln[SO_4^{2-}]_i - 2FV_m$$
$$\mu_{SO4}^{2-}, o = \mu_{SO4}^{2-0} + RT \ln[SO_4^{2-}]_o$$

Electrochemical potential energy

Chemical potential energy = $\mu_x^0 + RT \ln[X]$

Electrical potential energy = zFV

 μ_x^0 : chemical potential energy at [X] = 1M

- R: gas constant
- T : temperature
- z : electrical charge
- F: Faraday constant
- V: electrical potential

 μ_x (electrochemical potential energy) = $\mu_x^0 + RT \ln[X] + zFV$

Equilibrium

At equilibrium, $\mu_{x,i} = \mu_{x,o}$ (no net electrochemical force)

$$\mu_{x,i} = \mu_x^0 + RT \ln[X]_i + zFV_i$$

$$\mu_{x,o} = \mu_x^0 + RT \ln[X]_o + zFV_o$$

$$\begin{split} & \mu_x^{\ 0} + RT \ln[X]_i + zFV_i = \mu_x^{\ 0} + RT \ln[X]_o + zFV_o \\ & zFV_i - zFV_o = RT \ln[X]_o - RT \ln[X]_i \end{split}$$

$$V_{i} - V_{o} = V_{m} = \frac{RT}{zF} ln \frac{[X]_{o}}{[X]_{i}} , \text{ where } V_{o} = 0 \text{ mV}$$

$$Nernst \text{ equation}$$

Resting membrane potential

결국 휴지상태에서 투과도가 높은 이온의 전기화학적 평형전압이 휴지막전위 형성에 크게 기여한다.

Solute composition of intracellular and extracellular fluids

Out

(in mM)	In	
$K^{^+}$	155	
Na [⁺]	12	
Ca ²⁺	<0.0002	
CI	4	
HCO ₃	8	
Pr	64	
PO_4^{-3}	90	

$$E_{eq} = \frac{RT}{zF} \ln \frac{C_{out}}{C_{in}}$$
$$E_{eq} = \frac{2.303 RT}{zF} \log \frac{C_{out}}{C_{in}}$$

at 37 °C, RT/F = 26.7 mV

$$E_{\rm eq} = \frac{26.7}{z} \ln \frac{C_{\rm out}}{C_{\rm in}}$$

$$E_{\rm eq} = \frac{61.5}{z} \log \frac{C_{\rm out}}{C_{\rm in}}$$

Ion movement needed to establish a physiological membrane potential (-60 mV)

Cell radius (spherical), r = 10 μ m Membrane area: $4\pi r^2$ = 1257 μ m² = 1.257×10⁻⁵ cm² Cell volume: 4/3 π r³ = 4189 μ m³ = 4.189 ×10⁻¹² L = 4.2 pL

Membrane capacitance: $C_m = 1 \ \mu F/cm^2 \times 1.257 \ \times 10^{-5} \ cm^2 = 1.257 \ \times 10^{-11} \ F = 12.57 \ pF$

<u>q (electrical charge, coulomb) = C (capacitance, farad) × V (electrical potential, volt)</u>

Charge (q) = 12.57 pF × 0.060 V = 0.754 pCoulb $F = (1.6 \times 10^{-19} \text{ coulomb}) \times (6.02 \times 10^{23} \text{ mol}^{-1}) = 96,485 \text{ coulombs/mol}$

Amount of K+ moved: 0.754 pCoulb / (96,485 Coulb / 1 mole) = 0.78×10^{-5} pmole = 0.78×10^{-17} mole Concentration change: 0.78×10^{-5} pmole / 4.2 pL = 1.9μ M

K+ content in cell: $(0.14 \text{ mole / L}) \times (4.189 \times 10^{-12} \text{ L}) = 5.864 \times 10^{-13} \text{ mole}$ Fraction of K+ content moved out: $(0.78 \times 10^{-17} \text{ mole}) / (5.864 \times 10^{-13} \text{ mole}) = 1.33 \times 10^{-5} = 13 / 1,000,000$

Membrane potential and equilibrium potential for K⁺

where $\alpha = P_{N\alpha} / P_{K}$

Goldman-Hodgkin-Katz (GHK) equation

- The membrane is homogenous
- lons cross the membrane independently of one another
- Electrical gradient across the membrane is linear ("constant field theory")

$$V_{m} = \frac{RT}{F} \ln \frac{P_{k}[K^{+}]_{o} + PN_{a}[Na^{+}]_{o} + PC_{l}[Cl^{-}]_{i}}{P_{k}[K^{+}]_{i} + P_{Na}[Na^{+}]_{i} + PC_{l}[Cl^{-}]_{o}}$$

 $K^{+} \text{ efflux } = J_{K}^{in \to out} = P_{K}[K^{+}]_{i}$ $K^{+} \text{ influx } = J_{K}^{out \to in} = P_{K}[K^{+}]_{o}$

$$P_{K} = 1$$
, $P_{Na} = 0.02$, $P_{Cl} = 0.5$, $RT/F = 26.7$ mV at 37 °C

$$V_{\rm m} = 26.7 \ln \frac{1(5) + 0.02(145) + 0.5(6)}{1(140) + 0.02(10) + 0.5(106)} = -76.8 \,\mathrm{mV}$$

 $E_{\rm Cl} = -76.8 \, {\rm mV}$

$$V_{\rm m} = \frac{RT}{F} \ln \frac{P_{\rm K}[{\rm K}^+]_{\rm o} + P_{\rm Na}[{\rm Na}^+]_{\rm o}}{P_{\rm K}[{\rm K}^+]_{\rm i} + P_{\rm Na}[{\rm Na}^+]_{\rm i}}$$
$$= 26.7 \ln \frac{1(5) + 0.02(145)}{1(140) + 0.02(10)} = -76.8 \,\mathrm{mV}$$

Goldman-Hodgkin-Katz (GHK) equation

$$V_{m} = \frac{RT}{F} \ln \frac{P_{k}[K^{+}]_{o} + PN_{a}[Na^{+}]_{o} + PC_{l}[Cl^{-}]_{i}}{P_{k}[K^{+}]_{i} + P_{Na}[Na^{+}]_{i} + PC_{l}[Cl^{-}]_{o}}$$

$$E_{Na} \text{ "ceiling"} P_{K} : P_{Na} : P_{Cl} = 1.0 : 20 : 0.45$$

$$V_{m} = 26.7 \ln \frac{1(5) + 20(145) + 0.5(6)}{1(140) + 20(10) + 0.5(106)} = +53.5 \text{ mV}$$

$$0 \text{ mV}$$

$$V_{m,rest} - \frac{1}{E_{Cl}} = E_{K} \text{ "floor"}$$

$$P_{K} : P_{Na} : P_{Cl} = 1.0 : 0.04 : 0.45$$

When
$$P_{Na} = P_{Cl} = 0$$
 or $P_K >> P_{Na}$, P_{Cl} $V_m = \frac{RT}{F} \ln \frac{[K^+]_o}{[K^+]_i} = EK$

Nernst equation vs. GHK equation

Effects of changing P_k and P_{Na} on membrane potential

$$V_{m} = \frac{RT}{F} \ln \frac{P_{k}[K^{+}]_{o} + P_{Na}[Na^{+}]_{o}}{P_{k}[K^{+}]_{i} + P_{Na}[Na^{+}]_{i}}$$

[K] _o	[K] _i	[Na] _o	[Na] _i
135 mM	3.1 mM	145 mM	31 mM

Ionic fluxes and ionic currents

lonic flux (J)	Ionic current (I)
number of moles of ions moving through a unit area of membrane per unit time	Movement of charges per unit time
[mol/cm ²]/sec	Coulombs/sec, A

 $I = zF \times J \times A_{mem}, \ where F=96,485 \ coulombs/mol$

Sign Conventions for Fluxes and Currents			
FLOW OF POSITIVE OR NEGATIVE IONS RELATIVE TO CELL	DIRECTION AND SIGN OF FLUX, J	DIRECTION AND SIGN OF CURRENT, /	
↔	Outward, negative (<i>J</i> < 0)	Outward, positive $(I > 0)$	
Ŭ⊕	Inward, positive (J > 0)	Inward, negative (I < 0)	
$\overline{\bigcirc}$	Inward, positive (J > 0)	Outward, positive (<i>I</i> > 0)	
⊖⊷⊝	Outward, negative $(J < 0)$	Inward, negative (I < 0)	

Current–voltage relationship

Electrochemical driving force (Electromotive force, EMF)

Ionic currents through ion channels

Ohm's law I = V/R or $I = \gamma \times V$

$$\begin{split} I_{Na} &= G_{Na} \left(V_m - E_{Na} \right) = -135 \times G_{Na} \\ I_K &= G_K \left(V_m - E_K \right) = + 36 \times G_K \\ I_{CI} &= G_{CI} \left(V_m - E_{CI} \right) = + 15 \times G_{CI} \\ I_{Ca} &= G_{Ca} \left(V_m - E_{Ca} \right) = -177 \times G_{Ca} \end{split}$$

Voltage- and time-dependent ion channel currents

Passive electrical properties

- properties that are fixed, or constant, near the resting potential of cell
- determines the time course and spread of electrical activity
 → electrotonic potential
- Ex. Membrane resistance, membrane capacitance, axial resistance

Electrotonic potentials (전기긴장성 전압)

Equivalent circuit of a membrane has a resistor in parallel with a capacitance

Ohm's Law $I = \frac{V}{R} = g \times V$ $i_{K} = \gamma_{K}(V_{m} - E_{K})$ $I_{K} = g_{K}(V_{m} - E_{K})$ $g_{K} = N_{O} \times \gamma_{K}$

Equivalent circuit of a membrane containing many open Na⁺ and K⁺ channels

Equivalent circuit of a cell membrane

Passive properties of membranes

Current flow through a channel alters the charge distribution across the membrane

outward $I_{K} \rightarrow V_{m}$ moves negative direction \rightarrow inward I_{C}

Kirchhoff's Law

1. Kirchhoff's Current Law

-The principle of conservation of electric charge

Kirchhoff's Voltage Law
 The principle of <u>conservation of energy</u>

 $I_{\rm A} = I_{\rm B} + I_{\rm C}$ $I_{\rm A} \times R_{\rm A} + I_{\rm B} \times R_{\rm B} - V_{\rm b} = 0$ $I_{\rm C} \times R_{\rm C} - I_{\rm B} \times R_{\rm B} = 0$ or $I_{\rm C} \times R_{\rm C} = I_{\rm B} \times R_{\rm B}$ $I_{\rm A} = \frac{V_{\rm b} - I_{\rm B} \times R_{\rm B}}{R}$ $\frac{V_{\rm b} - I_{\rm B} \times R_{\rm B}}{R_{\rm b}} - I_{\rm B} - I_{\rm B} \times \frac{R_{\rm B}}{R_{\rm b}} = 0$ $I_{\rm B} = \frac{v_{\rm b}}{R_{\rm A} + R_{\rm B} + \frac{R_{\rm A} \times R_{\rm B}}{p}}$

$$\begin{pmatrix} 1 & -1 & -1 \\ R_A & R_B & 0 \\ R_A & 0 & R_C \end{pmatrix} \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} 0 \\ V_b \\ V_b \end{pmatrix}$$

If $V_b = 10 \text{ V}$, $R_A = 10 \Omega$, $R_B = 10 \Omega$, $R_C = 20 \Omega$ $I_A = 0.6 \text{ A}$, $I_B = 0.4 \text{ A}$, $I_B = 0.2 \text{ A}$

Parallel R-C circuit

А

В

Α

≻ /_T

В

Time course of V_m changes in parallel R-C circuits

Passive properties of the membrane

$$I_M = I_C + Ii$$
$$= C\frac{dv}{dt} + \frac{V_M}{R}$$

$$\Delta V_{\rm m}(t) = \Delta V_{\rm m,\infty}(1 - e^{-t/\tau}) = I_{\rm m} R_{\rm m}(1 - e^{-t/\tau})$$

 $\tau = R \times C$, $\Delta V_{m,\infty} = I_m \times R_m$

If τ = t, $\Delta V_{\rm m}$ = 0.63 $\Delta V_{\rm m,\infty}$

Voltage clamp

$$I_M = I_C + Ii$$
$$= C\frac{dv}{dt} + \frac{V_M}{R}$$

Passive responses by hyperpolarizing and small depolarizing voltage step

$$I_M = I_C + Ii$$
$$= C\frac{dv}{dt} + \frac{V_M}{R}$$

Electrotonic conduction

Passive flow of electric potential along the membrane

Cable equation

$$\Delta V_{\rm m}(x) = \Delta V_{\rm 0} e^{\left(\frac{-x}{\lambda}\right)}$$

$$\lambda$$
 (length constant) = $\sqrt{\frac{r_m}{r_i + ro}} \approx \sqrt{\frac{r_m}{r_i}}$

 r_m =membrane resistance (Ω × cm) r_i = intracellular resistance (Ω /cm) r_o =extracellular resistance (Ω /cm) λ = length constant (cm)

 $R_m = membrane resistance (Ω × cm²)$ $= r_m × circumference (π × d)$

 $\Delta V_{\rm m}$ at a distance λ $\Delta V(\lambda) = \Delta V_0 e^{\left(\frac{-\lambda}{\lambda}\right)} = \Delta V_0 e^{-1} = 0.37 \Delta V_0$

Myelin sheath decreases capacitance and increases electrical resistance across the cell membrane

A Normal axon

